A Comparison between EPA 2011NEIv2 and 2011NEIv1 Mobile Source Inventory: Extended Idling and Vehicle Classification

Jin-Sheng Lin, Kristen Stumpf, and Sonya Lewis-Cheatham Virginia Department of Environmental Quality

> MJO MOVES Workgroup conference call December 18, 2014

Extended Idling

Evaluations:

Method1: Truck Stop Parking Spaces

Method2: Emission Factors

Method3: Number of Idling Vehicles

EXT-APU: Extended Idling -- Auxiliary Power Unit

Idling Evaluation: Truck Parking Spaces

2011NEIv2 hotelling hours:

Truck spaces by county =

Annual hotelling hours / 10 hours/365 days;

Assuming truckers must rest 10 hours a day, this gives minimum available truck spaces required for a county (concept originated from GAEPD)

- Truck stop dataset compiled by Zac Adelman at UNC
 - 1st draft was developed by VADEQ from Allstays.com
 - Augmented to include truck parking spaces available at parking areas, rest areas, retail locations, truck stops, visitor centers, weigh stations, and welcome centers
 - Includes a low, mid, and high estimate of the number of truck spaces at each location
 - Reviewed and supplemented by states
 - Latest version received on 11/25/2014
 - Used the "high" estimate for each location and summed truck spaces by county

Summary on Truck Parking Spaces

- More parking spaces are required in 2011NEIv2 than exist in the Zac Adelman database
- The Truck stop database is not closely aligned with the idling that is occurring
- Could USEPA please provide methodology for estimating the idling hours for states that did not supply state specific data?

Idling Evaluation: Emission Factors

- Idling Hours
 - Provided by EPA and revised by states
 - Methodology uncertain
 - Estimated by individual county
 - Primarily assigned to counties with rural interstates
- Idling emission factors
 - Calculated in MOVES
 - Tabulated in RPH (rate per hour, g/hr) lookup tables
 - Vary by
 - Representative county (like RPD, RPV, or RPP)
 - Fuel month (1 and 7) and temperature
 - Only two SCCs, 2202620153 (EXT) and 2202620191 (APU)
- Extracted two sets of data for examination:
 - fuel month 7, temperature 90F
 - fuel month 1, temperature 40F

Representative County RPH rates (g/hr) by Pollutant and by State -- Jan Fuel Month at 40F **Jan EXT** Jan NOx rates > 0000 **July NOx rates** XX XXXX XX ____ Rates for CO, PM2.5, and VOC are identical b/w January and July XCO ONOx +VOC □PM2.5-PRI

Summary on Emission Factors

- CO, PM2.5, VOC
 - **EXT** and APU rates do not vary by fuel month
 - They vary by state in some cases, but not between counties in a given state
 - Inconsistent from state to state why are some states lower than others?
- NOX
 - EXT and APU rates both vary widely among counties
 - Not much difference between summer and winter EXT and APU 10-15% higher in January than in July
 - APU <<< EXT Generally 1/10th
- How are idling hours and RPH (EXT, APU) rates developed? What factors determine them?

Idling Evaluation: Number of Idling Trucks

- EXT emission factors for 2011NEIv2 are tabulated in RPH (rate per hour) lookup tables by (284) representative county in g/hr
- EXT emission factors for 2011NEIv1 are tabulated in RPV (rate per vehicle) lookup tables by (164) representative county in g/hr/car
- 2011NEIv2 RPH / 2011NEIv1 RPV = (g/hr)/(g/hr/car) =
 "equivalent" number of trucks by county
- 2011NEIv1 tables have two rates:
 22300073390 (MHDDV) and 2230074390 (HHDDV)
- Calculate two sets of data for the same county for examination:
 - fuel month 7, temperature 90F, MHDDV-based
 - fuel month 7, temperature 90F, HHDDV-based

Summary on Number of Idling Trucks

- 2011NEIv2 idling hours translate to approximately 800 MHDDV or 30 HHDDV. Is this reasonable??
- Idling emission rates (g/hr) vary between NEIv1 and NEIv2. Were the emission factors changed between two versions?
- PM2.5 emission rates seem particularly different relative to the other pollutants examined

Overall Summary on Extended Idling

- Evaluations using parking space, emission factors, or vehicle count all found issues
- By Parking Space
 - Inconsistent with truck stop database. What methodology was used?
- By Emission Factors
 - EXT and APU rates for CO, PM2.5 and VOC do not vary by fuel month
 - Inconsistent from state to state. Why are some states lower?
 - How are idling hours and RPH (EXT, APU) rates developed? What factors determine them?
- General comments
 - Idling hours are by individual county, but emission factors are by representative county
 - "Extended idling" will need to be added to the growing list of selection criteria for grouping representative counties
 - Do annual EXT-APU emissions go through temporalization in SMOKE? How does this work?
 - Clear guidance is needed for states to run the models correctly. Will these issues be included in the soon-to-be-released technical guidance?

Activities/Pollutants by SCC6

AAFFVVRRPP

AA: Mobile Source (22)

F F: MOVES Fuel Types

VV: MOVES Source Types

RR: MOVES Road Types

PP: MOVES Emission Processes

Effect of Vehicle Classification RPD (Lookup) Tables

- Emission rates are calculated in MOVES by representative county
- RPD rates (g/mile) depend on fuel month (1 and 7), speed, temperature, and relative humidity
- Examine two vehicle types, 2201210281 (gasoline cars on rural restricted road) and 2201310281 (gasoline trucks on rural restricted road) traveling at spdbin=14 (62.5 67.5 mile/hr)
- **Extract two sets of data for examination:**
 - fuel month 7, temperature 90F
 - fuel month 1, temperature 40F

Relative humidity for each representative county is different

SCC Mapping

	CSCC6	HPMS (VMT 6) vehicle types	MOVES (VPOP13) source types	SCC (MOVES2014)	SCC (MOVES2010b)
(1)	Non-Diesel Passenger Cars	20	21	220121	LDGV
(2)	Diesel Passenger Cars			220221	LDDV
(3)	Non-Diesel Motorcycles	10	11	220111	мс
(4)	Non-Diesel Trucks/Buses	30, 40, 50, 60	31, 32, 41, 42, 43, 51, 52, 53, 54, 61, 62	Too tedious to list, but you get the drift	LDGT1, LDGT2, HDGV
(5)	Diesel Trucks/Buses				LDDT, 2BHDDV, LHDDV, MHDDV, HHDDV, BUSES

HPMS 20 and 30 have been combined to become 25 in MOVES2014

Non-Diesel Passenger Cars (1) and Non-Diesel Trucks/Buses (4) have flipped from MOVES2010b to MOVES2014

Summary on CSCC6

- Non-Diesel passenger cars and Non-Diesel trucks/buses have flipped from MOVES2010b to MOVES2014
 - **HIGHER VPOP and VMT for trucks/buses**
 - **LOWER VPOP and VMT for passenger cars**
- Systematic and region-wide
- Could be a result of adoption of CRC data
- Difference in assumptions or approach taken to allocate VMT between source types
- Emission factors for trucks/buses are greater than passenger cars, so the difference matters and the assumptions should be evaluated carefully